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Abstract: Asthma and chronic obstructive pulmonary disease (COPD) are the two most prominent chronic inflammatory 

lung diseases with increasing prevalence. Both diseases are associated with mild or severe remodeling of the airways. In 

this review, we postulate that the pathologies of asthma and COPD may result from inadequate responses and/or a 

deregulated balance of a group of cell differentiation regulating factors, the CCAAT/Enhancer Binding Proteins 

(C/EBPs). In addition, we will argue that the exposure to environmental factors, such as house dust mite and cigarette 

smoke, changes the response of C/EBPs and are different in diseased cells. These novel insights may lead to a better 

understanding of the etiology of the diseases and may provide new aspects for therapies. 
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1. ASTHMA 

 General background: The term asthma origins form the 
greek word ‘asthmaino’ ( μ ), translated as ‘gasping’ 
and which was first used by Hippocrates (460-377 BC) in the 
Corpus Hippocraticum [1]. The Global Initiative for Asthma 
(GINA) defined asthma as a “chronic inflammatory disorder 
of the airways in which many cells and cellular elements 
play a role. The chronic inflammation is associated with 
airway hyper-responsiveness that leads to recurrent episodes 
of wheezing, breathlessness, chest tightness and coughing, 
particularly at night or in the early morning. These episodes 
are usually associated with widespread, but variable airflow 
obstruction within the lung that is often reversible either 
spontaneously or by treatment” [2]. This unifying definition 
of asthma highlights the clinical hallmarks of the disease: (i) 
the inflammatory process, (ii) the airway hyper-
responsiveness, (iii) the obstruction of the airflow, and (iv) 
increased airway remodeling. Asthma is a very 
heterogeneous disease, as it includes immunopathology, 
clinical different phenotypes, non-uniform response to 
therapies and distinct natural histories [3]. Asthma can be 
considered as a syndrome with different risk factors, 
different prognosis, and different response to treatment [4, 
5]. This indicates the need to rethink the definition of asthma 
as an inflammatory disease of the lung. 

 Although innate factors may have a genetic background, 
data analyses for genes associated with (1) increased 
production of IgE (atopy), (2) airway hyperrresponsiveness, 
or (3) the release of inflammatory mediators are rather 
inconsistent and provided no specific asthma-associated 
genes. However, a number of chromosomal regions were 
associated with asthma susceptibility and with the co-
inheritance of the tendency to produce elevated IgE serum 
levels together with airway hyper-responsiveness [6-9]. In a 
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genome-wide study, 79 genes were differentially expressed 
in cells of asthma patients relative to controls [10]. The 
expression pattern of these genes, however, was not 
straightforward but indicated complex interactions with 
several environmental risk factors. Known risk factors are 
obesity and male sex for childhood asthma [11]. 
Environmental risk factors that foster the development of 
asthma are indoor and outdoor allergens, such as house dust 
mite (HDM), cockroach allergens, cat and dog dander or 
Aspergillus mold. Especially, the exposure to allergens 
during childhood up to 3 years of age seems to be crucial for 
developing asthma-like symptoms [12-21]. Other risk factors 
are airway infections during childhood [22-25], occupational 
sensitisers [26-29], exposure to tobacco smoke [30-35], and 
the diet [36, 37]. There is considerable overlap of the 
mechanisms by which these risk factors may lead to the 
development of asthma. It is important to note that triggers 
for an asthmatic attack are not the same as factors that 
initiates asthma pathology. Many asthmatic subjects are 
atopic (60% of asthmatic adults, 80% of asthmatic children), 
but it is also true that not all atopic subjects develop asthma. 
Furthermore, 30% - 50% of asthmatic subjects are not 
atopic, meaning that no circulating IgE against one or more 
common allergens are present. Therefore, IgE-mediated mast 
cell degranulation is neither necessary, nor sufficient to 
develop asthma [38-40]. 

Pathogenesis of Asthma 

 Airway inflammation: Airway inflammation is a 
multicellular process involving Th2 lymphocytes, 
eosinophils, activated mast cells, neutrohphils, macrophages 
and basophils. In atopic asthma, the airway responds to 
airborne inhaled allergens by a Th2 response with the release 
of a typical array of cytokines (Th2 paradigm) [3]. In the 
small and large airways of chronic asthma patients, the 
number of mast cells and airway smooth muscle (ASM) cells 
are increased. Activation of mast cells occurs after binding 
of IgE to the highaffinity IgE receptor (FC RI) leading to the 
release of TNF- , IL-4 and IL-5. Mast cell-derived 
bronchioconstrictive mediators, such as leukotriene (LT) D4, 
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prostaglandin (PG)D2 and histamine, are potent ASM cell 
contractile agents [41, 42]. Vice versa, ASM cells produce 
chemokines, cytokines, and growth factors (e.g. IL-8, SCF, 
CXCL8, CXCL10) that further recruite mast cells into the 
lung [43, 44]. In addition, mast cell tryptase, a protease that 
activates protease activated-receptor type 2 (PAR2) on ASM 
cells induces muscle contraction [45]. 

 Airway hyper-responsiveness: Airway hyperresponsiv-
ness is a characteristic functional abnormality of asthmatic 
lungs resulting in airway narrowing when stimulated [2]. In 
consequence, asthma patients suffer from airflow limitation. 
Airway hyperresponsivenss is linked to both airway 
inflammation and and airway remodeling and is partially 
reversible by bronchodilators One of the mechanism leading 
to AHR may be an excessive contraction of the increased 
mass of ASM cells and by the thickening of the airway wall 
due to extracellular matrix. 

 Airway remodelling: Airway remodeling in asthma 
includes thickening of the reticular basement membrane 
(RBM), epithelium fragility, hypertrophy of mucus secreting 
glands, hypertrophy and hyperplasia of ASM cells and 
increased deposition of extracellular matrix. 

 Damage and shedding of the airway epithelium is another 
important histological characteristic of asthma. Asthmatics 
patients often present clusters of epithelial cells (Creola 
bodies) in sputum and have increased numbers of epithelial 
cells in bronchoalveolar lavage fluid, which may result from 
the loss of airway epithelium observed in biopsy specimens 
[46, 47]. Upregulation of epidermal growth factor receptors 
(EGFRs), impaired proliferation reduced expression of 
proliferative markers and upregulation of the cyclin 
inhibitor, nuclear p21

Waf1/Cip1 
indicated that the epithelium is 

chronically injured and the repair mechanism is impaired in 
asthma [48, 49]. Furthermore, the epithelium of asthmatic 
patients is more fragile and the tight junctions are weakened 
[3, 50], in consequence, the airway epithelium enters into a 

chronic “wound scenario” [51]. 

 Epithelial-derived growth factors force mesenchymal 
cells to produce collagen, reticular and elastic fibers, as well 
as proteoglycans and glycoproteins of the extracellular 
matrix (ECM), all of which contribute to the thickness of the 
airway wall in asthmatic [52]. The increased volume of the 
inner airway wall has functional consequences in terms of 
lumen reduction. Fibroblasts and myofibroblasts further 
contribute to tissue remodeling by deposing ECM 
components such as elastin, fibronectin, and laminin [53]. 
Mast-cell derived serine protease is a potent stimulant of 
fibroblast and ASM cell proliferation and stimulates the 
synthesis of type I collagen by human fibroblasts [54]. The 
distinct histologies of asthma are shown in Fig. (1). 

 The airway smooth muscle cell: One of the most 
striking aspects of the pathology of airway remodeling in 
asthma is the increased number and size of ASM cells [55], 
which had been reported by Huber and Koesser in 1922. At 
that time, the ASM cells were considered the main cause of 
the airway hyper-responsiveness, and held responsible for 
the exaggerated airway constriction as observed in asthma 
[56]. Later, this concept was replaced by the hypothesis that 
asthma results from a deregulated immune response, which 
however can only explain allergic asthma. Interestingly, an 
increasing number of recent studies points back to the 
pathologic ASM cell as a major cause of asthma. What 
properties of the ASM cell would support this idea? As ASM 
cells are the effector cells controlling the airway caliber, it is 
reasonable to consider that dysfunction of ASM cells 
contributes to the pathophysiology of asthma. Today, asthma 
is defined as chronic inflammatory disease of the lung with 
an increased Th2-like response and with high levels of IL-4, 
IL-5, and IL-13 [2]. This view ignores that the increased 
mass of ASM cells already exists in very young children and 
does not correlate with the severity and duration of the 
disease [57-62]. Furthermore, airway inflammation is not  
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Fig. (1). Immunohistochemistry of a representative section of the airway of a non-asthma control, a patient with mild-to-moderate asthma, 

and a patient with asthma who died of status asthmaticus (as indicated). The asthmatic airway demonstrates typical thickening of the 

basement membrane (1), and the characteristic increased mass of smooth muscle cells (2) [Reprinted with permission of the American 

Thoracic Society. Copyright (c) American Thoracic Society. Borger P, Tamm M, Black JL, Roth M. Asthma: is it due to an abnormal airway 

smooth muscle cell? Am J Respir Crit Care Med. 2006 Aug 15; 174 (4): 367-72; Official Journal of the American Thoracic Society, Diane 

Gern, Publisher]. 
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present in all patients with childhood asthma, whereas 
remodelling is [59, 63]. 

 As reviewed by Borger et al. [64], asthma is a 
heterogeneous disease involving not only immune-mediated 
mechanisms. Studies using cyclosporine to block T-cell 
activation and thereby the release of IL-2, IL-4 and IL-5 
showed only an effect on the late asthmatic response, 
suggesting that the early asthmatic response is not T-cell 
mediated [65, 66]. The use of anti-IL-5 monoclonal 
antibodies reduced eosinophils by 80% in the airways and in 
the blood of asthmatic subjects but did not reduce in any 
clinical measures of asthma [67]. More recent studies, 
however, report beneficial effects of IL-5 antibody in 
eosinophilic asthma [68]. Interestingly the reduction of ASM 
cells mass by thermoplasty in the airway wall significantly 
improved asthma symptoms over a period of 3 years to date 
[69]. In the light of these findings, ASM cells may not be 
only effector cells that cause airway constriction as a 
consequence of the inflammatory process, but they may be 
initiator- or co-initiator of the disease. In line with this 
hypothesis, ASM cells produce IL-1, IL-2, IL-5, IL-6, IL-11 
and IL-12, and are able to release TARC, a cytokine that 
induces Th2 migration and recruitment [70-74]. Therefore, 
ASM cell activity may initiate and orchestrate an 
inflammatory response and induce the recruitment of 
inflammatory cells into the lung. This capacity may be 
further enhanced through crosstalk with the airway 
epithelium. 

 Our group was the first to demonstrate that isolated ASM 
cells of asthmatic patients have the potential to proliferate 
faster than cells from control subjects

 
under defined 

conditions [75]. This could explain the augmentation of 
ASM cell mass in the asthmatic airway. Importantly, this 
ASM cell pathology is maintained through weeks in culture 
and many passages long after any inflammatory mediator 
present in the tissue has been washed out. Furthermore, our 
group found that ASM cells from asthma patients are primed 
for IL-6 release [76, 77].

 
We can therefore speak of a 

constitutive activated phenotype of ASM cells in asthma 
patients. 

2. COPD 

 General background: COPD is a chronic inflammatory 
lung disease that will be the third most frequent cause of 
death throughout the world. The Global Initiative for 
Chronic Obstructive Lung Disease defines COPD as “a 
pulmonary disease characterised by airflow limitation that is 
not fully reversible. The airflow limitation is usually 
progressive and associated with an abnormal inflammatory 
response of the lung to noxious particles or gases” [78]. 
COPD affects >10% of the world population over the age of 
40 years [79] and every year almost 3 million people die of 
this disease [80, 81]. Despite of its global prevalence, there 
is still a fundamental lack of knowledge about the cellular, 
molecular and genetic causes of COPD and an efficient 
therapy is non-existing [82]. 

 COPD involves host-dependent (genetic) and 
environmental factors, but undoubtedly the major cause, is 
cigarette smoking; it accounts for approximately 90% of all 
cases and there is a correlation between the tobacco 
consumption and severity of COPD. Furthermore, indoor air 

pollution from biomass fuel smoke is a major cuse of COPD 
in the developing world [83]. However, only 10-20% of 
people exposed to smoke develop COPD, which indicates 
that a genetic susceptibility has to be combined with 
environmental factors to induce COPD [84-86]. Mutations in 
the alpha-1 antitrypsin gene, which speciies a serine 
protease, lead to the development of emphysema, and 
decline in lung function due to digestion of the lung forming 
extracellular matrix and cell-cell interactions [87]. Mutations 
in genes of the detoxification proteins GSTM1 and GSTT1, 
also confer a risk for declining FEV1, especially in males, 
and this risk is further increased by smoking [88]. In 
addition, gene polymorphisms of the ADAM33 [89], 
DECORIN and TGFB1 genes confer the susceptibility to 
develop COPD [90]. Environmental COPD risk factors are 
occupational dust and chemical exposure [91-94], infections 
[95-98], the socioeconomic status [99]. Others regard COPD 
as an auto-immune disease with an aberrant response to 
antigens (e.g. elastin) released after smoking-induced tissue 
injuries [100]. 

Pathogenesis of COPD 

 Airway inflammation: The immune cells in the COPD 
lung are disease-specific with predominantly neutrophils, 
alveolar macrophages, and CD8 positive T-cells. Compared 
to “healthy” smokers, COPD patients with emphysema show 
a 25-fold increase in the number of macrophages in the lung 
tissue and in the alveolar [95] and macrophage numbers in 
the airways correlated with the severity of COPD [101]. In 
COPD the inflammation occurs mainly in the peripheral 
airways (bronchioles), the lung parenchyma, and the 
pulmonary vessels. Distinct from asthma, the bronchioles of 
COPD lung are obstructed and present with fibrosis [102-
107]. 

 Airway remodelling: In COPD, airway remodelling 
leading to airflow limitation is mainly observed in the small 
airways and lung parenchyma. In pulmonary emphysema, 
one of causes leading to defective alveolar regeneration is 
due to the malfunction of fibroblasts [108, 109]. The major 
characteristic of airflow limitation in COPD is the fact that it 
is only partly reversible and progressive. In COPD, the 
thickness of the airway wall of small airway increases and 
thus limits the airflow. This is due to a high collagen 
deposition and mucosa thickening [110-114]. The increased 
ECM accumulation is thought to be a consequence of the 
chronic inflammatory process. Increased levels of TGF-  are 
typical for COPD lungs and may cause the release of 
connective tissue growth factor (CTGF) which, in turn, 
stimulates collagen deposition in the airway wall

 
[115-118]. 

Furthermore, inflammation destructs the alveolar wall 
leading to airway wall deformation and narrowing of the 
airway lumen which may ultimately lead to loss of lung 
tissue and emphysema [119]. 

 Protease-antiprotease imbalance: The major hypo-
thesis to explain COPD-associated emphysema is an 
imbalance of proteases and their inhibitors. This idea might 
result from the fact that congenital emphysema is caused by 
the deficiency of alpha-1 antitrypsin, a protein that prevents 
the lung tissue from being digested by proteases. The lack of 
this protein accounts for 2% of COPD patients, with a 
substantial higher risk in smokers [87]. Unopposed, the 
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activity of proteases induce lung damage similar to tissue 
structural changes seen in COPD-associated emphysema. In 
addition, matrix metalloproteinases (MMPs), may be 
involved in COPD since they induce morphological changes 
in the lung and increased concentrations of MMP-1, -2, -9, -
12 were found in bronchoalveolar lavage samples of COPD 
patients [120, 121]. Since MMP-12 degrades elastin it is 
considered the leading proteinase responsible for pulmonary 
emphysema [122]. 

 Cigarette smoke: Cigarette smoke is a complex mixture 
that consists of over 4,000 chemical components, including 
10

15
 highly reactive molecules in the gas phase alone [123-

125]. In vitro, the biological effect of tobacco smoke can be 
studies using single compounds (e.g. nicotine), or cigarette 
smoke extracts (CSE), or smoke conditioned medium (SCM) 
[126] (Fig. 2). Cigarette smoke inhibits alveolar repair and 
hence contributes to tissue loss observed in emphysema 
[127]. CSE-stimulated lung fibroblasts release neutrophil 
and monocyte-attracting factors, including IL-8, granulocyte-
macrophage colony-stimulating factor (GM-CSF), and 
monocyte chemotactic protein-1 (MCP-1) [128]. Chronic 
cigarette smoke exposure increased the number of 
neutrophils, lymphocytes, and macrophages in the lung [129, 
130]. Significant retention of activated neutrophils in the 
lung was observed after smoking [131]. In a mouse model, 
cigarette smoke increased desmosine in the lung, which 
indicates elastin fiber breakdown [132]. Compared to non-
smokers, exhaled breath condensate of healthy smokers 
contained increased levels of IL-1 , IL-6, IL-8, IL-10, and 
TNF-  [133]. In rodent models, acute and chronic cigarette 
smoke exposure increased levels of TNF- , IL-1 , IL-8, and 
MCP-1, and increased mononuclear cells and neutrophils in 
the lung [134]. TNF-  may be the crucial factor for cigarette 
smoke-induced emphysema, since overexpression of TNF-  
causes emphysema and alveolar inflammation [135]. 
Likewise, TNF-  receptor knockout mice were protected 
against emphysema [136]. Finally, cigarette upregulates 
MUC5AC expression, amplifying the expression of 
respiratory mucins and reduce the airflow [137]. 

3. CEBPs AND CHRONIC INFLAMMATORY LUNG 
DISEASES 

 C/EBPs: C/EBPs comprise a family of six proteins, 
C/EBP , , , ,  and , which are characterised by two 
transactivation domains, a basic DNA binding domain and a 
leucine zipper motif. The latter mediates dimerization bet-
ween same (homo-dimers) or other C/EBPs (heterodimers) 
[138, 139]. C/EBPs are pleiotropic proteins involved in 
inflammation, cell differentiation and tissue remodelling. 
C/EBPs are involved in the fine-tuning of cell differentiation 
and metabolism. Their ability to control differentiation is 
achieved trough their interaction with other transcription 
factors, such as the peroxisome proliferator activated 
receptor-  (PPAR- ) in a cell type specific manner [140, 
141]. Due to functional redundancy, C/EBP- null mice often 
fail to yield informative phenotypes [140]. The best studied 
C/EBP family members are C/EBP  and C/EBP . 

 C/EBP : C/EBP  is a DNA binding transcription factor 
that binds to the CCAAT box motif present in several gene 
promoters [142]. The highest level of C/EBP  mRNA are 
found in differentiated cells of the liver, adipose tissue, the 
intestine, the lung, and the adrenal gland, as well as in 
myeloid and placental cells [143]. C/EBP  plays a crucial 
role in cell growth arrest and cell differentiation, showing an 
expression pattern which is inversely related to proliferation 
[144]. As reviewed by Johnson et al. [145], initial evidence 
for the anti-proliferative function of C/EBP  came from the 
activation of a chimeric C/EBP -estrogen-receptor (ER) by 
estrogen-arrested pre-adipocytes in the G0/G1 phase [146]. 
More recently C/EBP  has been implicated in the 
development of a form of acute myelogenous leukemia 
(AML1-ETO), where C/EBP  expression is suppressed or 
strongly decreased, leading to leukemogenesis and impaired 
neutrophil differentiation due to an inhibition of cell cycle 
exit [147]. In acute myeloid leukemia (AML) the oncogenic 
fusion proteins BCR-ABL and AML1-MDS1-EVI1 
increased calreticulin (CRT) levels, which then inhibited 
C/EBP  translation [148]. In general, the down-regulation of 

 

Fig. (2). Effects of cigarette smoke. Cigarette smoke is able to penetrate the airway wall, thereby activating epithelial cells and fibroblast to 

produce proinflammatory cytokines, in particular interleukin 8 (IL8). In addition, cigarette smokes causes the fibroblasts to stop proliferation. 

Over time, the net effect may result in a loss of lung tissue. 
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C/EBP  protein appears crucial in myeloid leukemia 
development. In the lung, C/EBP  is also a master regulator 
of airway epithelial differentiation and its loss of function as 
a tumor suppressor leads to non-small lung cancer [149]. 
C/EBP  associates with the cyclin-dependent kinase (CDK) 
inhibitor p21 [150], which then binds and inhibits the 
activity of CDKs. C/EBP  binds directly to CDK2 and 
CDK4 thereby inhibiting them to phosphorylate their 
substrate [145]. In normal cells, C/EBP  forms a complex 
with the glucocorticoid receptor (GR), which then activates 
the p21(Waf1/Cip1) promoter [151-153]. Furthermore, 
C/EBP  can directly repress S-phase driving genes either 
forming a complex with EF2 or binding directly to the 
CCAAT consensus site in these genes and suppress their 
transcription [145]. These findings show that C/EBP  
protein plays an important role in both cell-cycle arrest and 
cell differentiation. However, C/EBP  can also have 
opposite functions. For instance, in p21-deficient mouse 
embryo fibroblast C/EBP  induced cell-cycle exit [154]. 

 Translation control of CEBP mRNA: In humans, the 
mRNAs of the CEBPA and CEBPB genes are present 
ubiquitously and protein levels are predominantly regulated 
at the translational level. The mRNAs of both genes have 
specific and highly distinguished regulatory motifs, and 
several C/EBP  proteins are translated from a single CEBPA 
mRNA by three different so called Kozak sequences [155]. 
The different C/EBP  isoforms retain different parts and 
functional domains and display opposite functions regarding 
gene regulation and cell proliferation. The full-length 
C/EBP  (p40/42) is a transcription, and contains a 
transactivation domain, while the truncated C/EBP  (p30) 
lacks this transactivation activity and counteracts the 
function of the full-length protein [156-159]. 

 The mechanism of translation control of the CEBPA 
mRNA is presented in Fig. (3). CEBPA mRNA contains 
three translation initiation sites (AUG), which are in an 
optimal Kozak consensus sequence [155, 160]. The human 
CEBPA mRNA, therefore, can be translated into three 
proteins of different size: 42kD, 40kD and 30 kD proteins, 
respectively. Null-mutations abolishing the expression of the 

full-length forms [p42, p40] enhanced the expression of the 
truncated protein (p30) [155]. An additional upstream open 
reading frame (uORF), which is always out of frame with 
respect to the CEBP coding frame, translates a small 
pentapeptide. Mutations in this uORF abolished the 
translation of the truncated form (p30) and enhanced the 
expression of the full-length (p40/42), demonstrating that the 
uORF is essential for differential translation initiation. The 
organization of the CEBPB mRNA is very similar to that of 
CEBPA and the same regulatory mechanism generates full 
length and truncated proteins [155]. 

 Several distinct pathways control the initiation of CEBP 
mRNA translation: (1) glycogen-synthase kinase 3 (GSK3), 
(2) phosphoinostitol 3-kinase (PI3K), and (3) mammalian 
target of rapamaycin (mTOR). The RNA-dependent protein 
kinase (PKR) is part of the GSK3-pathway and affects 
translation initiation by phosphorylation-induced inactivation 
of the rate-limiting translation protein eIF-2, which is part of 
the ternary eIF2/GTP/Met-tRNA-

Met
 complex [161]. This 

facilitates the recognition of the AUG-codon and initiates 
protein synthesis. In addition to PKR, three more eIF2 
kinases exist: (1) haem-regulated inhibitor kinase (HRI), (2) 
PKR-like endoplasmic-recticulum kinase (PERK) and (3) 
GCN2 [162]. In PKR mutant cells, eIF-2 cannot be 
inactivated and the C/EBP  expression shifted towards the 
truncated form. Similarly, activation of the mTOR pathway 
leads to more truncated proteins [155], as mTOR 
phosphorylates and inhibits PP2A, which in turn keeps the 
translation inhibitory 4E-BP1 protein in an active state [163-
167]. It has been reported that 4E-BP1 inhibits eIF4E 
activity [168]. In addition, binding of eIF4E to the mRNA-
cap is the rate-limiting step of the eIF4E complex and of the 
initiation of translation [169]. Over-expression of eIF4E 
shifted CEBPA mRNA translation towards the truncated 
isoform, while the inhibition of mTOR by rapamycin 
reduced the expression of the truncated C/EBP  isoform 
[155]. High eIF-2 and eIF-4E activity leads to predominant 
expression of truncated C/EBP  and C/EBP  proteins. 

 The uORF is crucial to modulate the ratio of C/EBP  
isoforms and thus the re-initiation of translation. When the 

 

Fig. (3). Schematic representation of the CEBPA mRNA, the position of the translation start codons (AUG), and the translation products 

(red: upstream open reading frame; green: transactivation domain; orange: DNA binding domain; uORF: upstream open reading frame). 
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translation activity from the uORF initiation codon is low, 
steric hindrance of the ribosomal complex is also low which 
generates full-length C/EBP  proteins, because translation is 
initiated from the first and second AUG-codon (see Fig. 4). 
Lack of nutrients or the presence of inhibitory signals, 
further decreases truncated proteins due to reduced 
efficiency of translation re-initiation at the third AUG codon 
[155]. When translation activity from the uORF initiation 
codon is high, however, steric hindrance is high and the third 
AUG-codon is the preferred site of translation initiation. 
This results in an increased level of truncated [p30] proteins 
[170, 171]. The efficiency of translation re-initiation depends 
on the reloading of the eIF2/GTP/Met-tRNA

Met 
complex, 

whereas the eIF4E complex is required for efficient scanning 
and re-initiation after uORF translation [155, 172]. The rapid 
shift from truncated to full-length protein allows for a 
stringently controlled regulation and fine-tuning of cellular 
response to external stimuli. This is important, because it 
determines whether cells proliferate or exit the cell cycle and 
differentiate. The small uORFs is a cis-regulatory mRNA 
element of translation initiation, that has been found in 
various regulatory genes, including those for transcription 
factors SCL/Tal1 [173] and ATF-4 [174], thrombopoietin 
(TPO) [175], cyclin CLN3 [176] and beta-Secretase (BACE-
1) [177]. 

 Finally, CEBPA mRNA translation is reduced by 
calreticulin-binding to a CEBPA mRNA stem loop formed 
by a GC rich motif. Binding of calreticulin to this motif 
repressed the translation [178]. In adipogenesis, an inverse 
relationship of C/EBP  and calreticulin expression exists and 
calreticulin promoted adipogenesis by repressing the 
expression of C/EBP  and PPAR  [179]. The opposite also 
occurs, when the hematopoietic zinc-finger, Hzf, interacts 
with the 3’ un-translated region of the CEBPA mRNA, 
thereby enhancing the translation [180]. 

 CEBP mRNA translation and disease: The etiologies 
of several human diseases can be traced back to mutations of 
genes that encode proteins of the translation control 
machinery. A wide range of proliferative disorders, 
including cancers, has been associated with deregulated or 
faulty mRNA translation [181]. Mutations of the PERK 
kinase that regulates eIF2 activity cause the Wolcott-
Rallison Syndrome (WRS), a form of permanent diabetes 
[182-184]. Increased levels of eIF4E are found in several 
cancers [185, 186], including colon adenoma and carcinoma 
[187], breast carcinoma [188, 189], non-Hodgkin’s 
lymphoma [190] and primary bladder cancer [191], and in 
chronic myeloid leukaemia, the expression of the RNA-
binding protein hnRNP is abnormally high. Interestingly, 
hnRNP binds to the 5’ UTR of the CEBPA mRNA thereby 
inhibiting its translation [192]. In addition, the deregulation 
of eIF2 is frequently observed in cancer cells [159, 187, 190, 
193]. Congenital thrombocythaemia, a disease characterised 
by sustained proliferation of bone-marrow mega-karyocytes, 
is also caused by a mutation in the uORF of the cytokine 
thrombopoietin [174]. 

 Airway remodelling and C/EBPs: In human ASM cells 
and fibroblasts, C/EBP  regulates proliferation trough the 
induction of the cell cycle inhibitor p21

Waf1/Cip1
. In normal 

cells, -mimetics and steroids activate p21
Waf1/Cip1 

via 
C/EBP  forming a complex with the glucocorticoid receptor 
(GR).

 
In absence or at low levels, the C/EBP  complex with 

the GR can not be formed in sufficient amounts to activate 
the p21

Waf1/Cip1
 gene and may explain the increased 

proliferation of ASM cells. [151-153, 194, 195]. We recently 
showed that ASM cells of asthma patients have normal 
levels of CEBPA mRNA, but the translation is impaired 
leading to a decreased expression of the C/EBP  protein 
[196]. This mechanism operates via the uORF of the CEBPA 
mRNA [197]. In this respect, it is important to note that in a 

 

Fig. (4). Schematic representation of the CEBPA mRNA translation mechanism, leading to the formation of the truncated or full-length 

C/EBP  protein. For truncated C/EBP  proteins, the translation starts at the uORF and stops after translation of the uORF. Then it reinitiates 

at AUG 3, generating the truncated isoform (A). For the generation of the full length C/EBP  the translation starts at the start codon AUG 1 

or AUG 2 and reads trough (B). (Red: upstream open reading frame; Green: transactivation domain; Orange: DNA binding domain). 
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rhesus monkey model, exposure to HDM during the early 
years of life led to a persistent increase of ASM cells by an 
unknown mechanism but independent of the immune system 
[198]. Hence, hyperplasia of ASM cells may be the result of 
prolonged exposure to HDM allergens. Indeed, we recently 
observed that HDM extracts significantly reduced C/EBP  
expression in ASM cells of asthma patients [197]. 
Interestingly, the reduction operated via the uORF 
mechanism, but rather via increased levels of calreticulin. In 
addition, HDM exposure induced ASM cell proliferation and 
enhanced the release of IL-6. Furthermore, HDM reduced 
C/EBP  levels via the activation of the PAR-2 receptor. 
Hence, HDM triggered both protease-dependent and 
protease-independent mechanisms that regulate C/EBP  
[197]. These observations indicate a link between 
deregulated C/EBP  translation and in vitro hyperplasia of 
ASM cells and inflammation. The mechanism by which an 
impaired translation of the CEBPA mRNA may lead to the 
characteristics of an asthmatic airway is presented in Fig. 
(5). 

 Airway hyper-responsiveness and C/EBPs: Airway 
biopsy specimens of asthma patients exhibited a significant 
increase in the contractile properties [199, 200]. Even single 
ASM cells demonstrated increased intrinsic contractile 
properties, which coincided with enhanced expression levels 
of myosin light-chain kinase messenger RNA in ASM cells 
of asthma patients [199]. Such an increase might account for 
the increased velocity of muscle cell shortening, since 
myosin light-chain kinase (MLCK) phosphorylates the 
regulatory light chain of myosin and regulates the rate of 
cross-bridge cycling, and therefore of the contractile 
properties of ASM cells. Although the promoter that 
regulates the expression of this kinase contains several 
C/EBP binding sites, the effect of C/EBP binding in this 
region is currently unknown [201]. 

 Airway inflammation and C/EBPs: NF B is an 
important proinflammatory transcription factor required for 

the expression of cytokines, adhesion molecules, chemokines 
and growth factors [74, 202]. Interestingly, C/EBP  has the 
potential to silence this inflammatory response through 
interference with NF B [34, 35]. The expression of many 
cytokines [203] and TARC [202] depends on NF B and/or 
C/EBP binding sites in their promoters. Because C/EBP  
(p40/42) is mainly a negative regulator of gene expression, a 
diminished expression of it may initiate airway inflammation 
through the release of proinflammatory mediators into the 
airway. The asthma-associated cytokine IL-4 blocks C/EBP   
expression [204], hence sustaining airway inflammation. The 
observation that ASM cells of asthma patients produce less 
PGE2 than those from normals, suggests that PGE2 may also 
sustain a Th2-like inflammation. PGE2 is a potent inhibitor 
of proliferation and cell activity. Binding of PGE2 to its 
receptor generates cyclic adenosine mono phosphate (AMP), 
which counteracts the production of many proinflammatory 
cytokines and chemokines. Th2-like cytokines, in particular 
IL-4 and IL-5, are less susceptible to the inhibitory effect of 
cyclic AMP than Th1-like cytokines [205]. Intriguingly, the 
expression of the main regulator of PGE2 production 
(COX2) critically depends on C/EBPs. Here, we also do not 
know the effects of the various C/EBP isoforms [206]. 

 COPD and C/EBPs: The role of CEBP genes in the 
development of COPD is less clear. In lung epithelial cells of 
COPD patients, DNA-binding C/EBP  levels are decreased 
relative to cells of ‘healthy smokers’ and might render the 
epithelium resistant to efficient regeneration [207]. In 
primary human lung fibroblasts, cigarette smoke regulated 
both C/EBP  and C/EBP  via two distinct translational 
control pathways [197]. In the absence of serum, cigarette 
smoke induced full-length C/EBP  and -  proteins via the 
uORF mechanism, which coincided with decreased 
proliferation and increased expression of IL-8 (which is 
C/EBP controlled) [208]. In the presence of FCS, cigarette 
smoke decreased C/EBP  and -  via an induction of hnRNP 
E2. Here, the anti-proliferative role of full-length C/EBP  
proteins may explain the reduced proliferation of fibroblasts, 

 

Fig. (5). Model with the proposed central role of the airway smooth muscle (ASM) cell in airway inflammation and remodeling. Due to 

predisposition and/or environmental stimuli, ASM cells of patients with asthma express decreased levels of the C/EBP . [Adapted from 

Borger P, Tamm M, Black JL, Roth M., Asthma: is it due to an abnormal airway smooth muscle cell? Am J Respir Crit Care Med. 2006 Aug 

15; 174(4): 367-72]. 
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hence providing a basis to understand the destruction of the 
tissue and the increased airway remodelling observed in later 
stages of COPD. In addition, increased full-length C/EBP  
levels may result in reducing the elastin levels in alveoli, 
because C/EBP  is a negative regulator of elastin 
transcription [209]. 

C/EBPs and Therapy 

 The treatment of the increased bulk of ASM cells as 
observed in the lungs of asthmatic patients may be through 
the modulation of the C/EBP  translation. This would 
require novel therapeutical strategies that target mainly the 
signaling pathways regulating the translation control at the 
uORF, e.g. the mTOR pathway. Alternatively, lithium 
chloride has been shown to prevent the degradation of 
C/EBP  protein and might be tested as a candidate drug to 
counteract airway wall remodelling in asthma [210]. Similar 
strategies might be envisioned in the treatment of the 
remodeling processes in the lung of COPD patients, but with 
the focus on C/EBP  [196]. 

4. GENERAL CONCLUSIONS AND OUTLOOK 

 The pathologies of asthma and COPD are genetically 
predisposed, but the environment plays a crucial role for the 
initiation and progression of these diseases. Impaired 
translation of the cell cycle regulators of the C/EBP family 
may play a significant role in the pathogenesis of these lung 
diseases. Here we argued that asthma may stem from an 
impaired translation of CEBPA mRNA. A direct interaction 
of ASM cells of asthma patients with HDM may be a key 
event that chronically reduces C/EBP  protein levels. The 
lack of C/EBP  protein speeds up cell proliferation and 
stimulates the release of pro-inflammatory cytokines. The 
results are an increased bulk of ASM cells and airway 
inflammation, two key pathologies in asthma. Regarding the 
development of COPD, cigarette smoke-induced aberrant 
translational control of CEBPA and CEBPB mRNAs may be 
the key to understand and treat COPD pathology. Today, no 
effective therapy for COPD is available and strategies to 
prevent remodelling parameters are scant. Restoring the 
balanced expression of both C/EBP  and C/EBP  by 
intervention at the level of translation control may be 
beneficial for both asthma and COPD patients. 
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