Average Volume-assured Pressure Support as Rescue Therapy after CPAP Failure in Pediatric Obstructive Sleep Apnea: A Retrospective Case Series Study

Victor T. Peng1, Nauras Hwig1, Anayansi Lasso-Pirot2, Amal Isaiah3,4 and Montserrat Diaz-Abad5,*

1Sleep Disorders Center, University of Maryland Medical Center, Baltimore, Maryland, MD 21201, USA
2Department of Pediatrics, Division of Pediatric Pulmonology, University of Maryland School of Medicine, Baltimore, Maryland, MD 21201, USA
3Department of Otorhinolaryngology-Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, Maryland, MD 21201, USA
4Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland, MD 21201, USA
5Department of Medicine, Division of Pulmonary and Critical Care Medicine, University of Maryland School of Medicine, Baltimore, Maryland, MD 21201, USA

Supplemental Table 1. Sleep study parameters in each individual patient.

<table>
<thead>
<tr>
<th>Patient #</th>
<th>AHI (events/h)</th>
<th>Time Oxygen Saturation ≤ 90% (min)</th>
<th>Minimum Oxygen Saturation (%)</th>
<th>Total Sleep Time (min)</th>
<th>Sleep Efficiency (%)</th>
<th>N3 (%)</th>
<th>R (%)</th>
<th>Sleep Latency (min)</th>
<th>Arousal Index (arousals/h)</th>
<th>Reason For Failed CPAP Titration</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>138.2 57.5 11.1</td>
<td>59 72 95 323.5 358 429 78.5 82.3 97.1</td>
<td>15.4 29.2 16.4</td>
<td>12.8 20 0.5 3 3</td>
<td>122.4 50.6 0.3</td>
<td>AHI ≥ 10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>90 24.7 12.3</td>
<td>0 75 87 95 395.5 384.5 380 91.6 86 86.4</td>
<td>24 20.5 10.3 12.4 7.6 11</td>
<td>13 46 21 74.5 3 7.5</td>
<td>Hypoventilation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>40.7 27.7 10.7</td>
<td>1.5 0.6 1.2 83 88 85 405.5 162.5</td>
<td>186 91.1 93.9 93.3</td>
<td>35 10 16.1 17.8 2.2</td>
<td>0 49.5 196 29.1 25.1</td>
<td>TE-CSA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>18.6 3.9 1.6</td>
<td>3.3 0 80 96 95 399.5 352 405 92.3 83 92</td>
<td>18.8 12.5 22.4 17.3 22.1 31.8</td>
<td>25.5 24 6.5</td>
<td>16.5 0.3 0.3</td>
<td>Hypoventilation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>64.5 27.5 4.8</td>
<td>7.8 6.4 0 60 70 94 154.5 181 401.5 48.7 46.3 48.9</td>
<td>17.7 15 22 8.8 9</td>
<td>8.1 29.5 55 25 42.3</td>
<td>0.7 1.5</td>
<td>CPAP intolerance</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>30.4 18.9 2.5</td>
<td>7 15.3 0 64 65 89 365.5 335 389.5 81.6 84.4 78.5</td>
<td>24.7 25.6 27</td>
<td>11.2 8.6 11.3</td>
<td>32.5 12 90 19.9 4.5 0.8</td>
<td>AHI ≥ 10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>8.8 9.1 3.2</td>
<td>0 0 16 51 91 155 346 456.9 428.5</td>
<td>71 96.7 98.3</td>
<td>23.3 35.8 11.5</td>
<td>20.2 10.2</td>
<td>20 5 6 1.2</td>
<td>4.5 0.1</td>
<td>TE-CSA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>38.9 16.1 11.5</td>
<td>20.1 0.6 0.5 66 87 87 349 406 328.5 73.5 84 77.5</td>
<td>21.3 28.6 12.4</td>
<td>13.5 7.2 12.1</td>
<td>10 12.5</td>
<td>35.4</td>
<td>10 5.4</td>
<td>Hypoventilation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>15.7 19.3 7.4</td>
<td>1.2 1.5</td>
<td>0 54 80 90 354.5 270 387.5 85.6 64.6 82</td>
<td>24.9 24.3 11.5 10.4</td>
<td>5.6</td>
<td>11.5</td>
<td>42.5 18 26.6</td>
<td>5.8</td>
<td>8.9 0.6</td>
<td>AHI ≥ 10</td>
</tr>
</tbody>
</table>

Abbreviations: A: AVAPS titration; AHI: apnea-hypopnea index; P: baseline polysomnogram; C: CPAP titration; TE-CSA: treatment-emergent central sleep apnea.

© 2023 Peng et al.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.